博客
关于我
利用 SQLAlchemy 实现轻量级数据库迁移
阅读量:686 次
发布时间:2019-03-17

本文共 2942 字,大约阅读时间需要 9 分钟。

lightweight database migration tools with python

in daily work, it's common to need to migrate data between different databases. here are some simple methods to consider:

copy data between databases

  • kettle's table copy wizard

    previously wrote a blog post about this: a simple guide to using kettle for database migrations.

  • use csv as intermediary

    requires time to process field data types and ensure data consistency.

  • utilize sqlalchemy

    wrote a blog post about this too: a step-by-step guide to using sqlalchemy for database migrations. the process involves creating models and manually mapping field types.

  • step-by-step database migration

    assuming you need to migrate the emp_master table from sql server to sqlite, follow these steps:

  • create the target database schema

    use sqlacodegen to generate sqlalchemy models based on the source database:

    sqlacodegen mssql+pymssql://user:pwd@localhost:1433/testdb > models.py --tables emp_master

    adjust the generated code manually to match your needs:

    # models.pyfrom sqlalchemy import Column, Integer, Stringfrom sqlalchemy.ext.declarative import declarative_baseBase = declarative_base()class EmpMaster(Base):    __tablename__ = 'emp_master'    emp_id = Column(Integer, primary_key=True)    gender = Column(String(10))    age = Column(Integer)    email = Column(String(50))    phone_nr = Column(String(20))    education = Column(String(20))    marital_stat = Column(String(20))    nr_of_children = Column(Integer)

    create the database and table using sqlalchemy:

    # create_schema.pyfrom sqlalchemy import create_enginefrom models import Baseengine = create_engine('sqlite:///employees.db')Base.metadata.create_all(engine)
  • migrate data using pandas

    read data from source database to a pandas dataframe and write it to the target database:

    # data_migrate.pyfrom sqlalchemy import create_engineimport pandas as pdsource_engine = create_engine('mssql+pymssql://user:pwd@localhost:1433/testdb')target_engine = create_engine('sqlite:///employees.db')df = pd.read_sql('emp_master', source_engine)df.to_sql('emp_master', target_engine, index=False, if_exists='replace')
  • advantages of using pandas for data migration

    pandas provides a convenient way to handle data transformation and export to various database formats. its read_sql() function simplifies data extraction from databases, while to_sql() handles the insertion process.

    why choose pandas for database migration

    pandas is lightweight and efficient for data migration tasks. it allows for quick data visualization and manipulation before storage in the target database.

    potential issues to address

    • ensure that data types are compatible between source and target databases.
    • handle null values and data validation to maintain data integrity.
    • test the migration process on a small dataset before applying it to the live database.

    by following these steps, you can efficiently migrate your database while minimizing risks and ensuring data consistency.

    转载地址:http://zjthz.baihongyu.com/

    你可能感兴趣的文章
    Node-RED中建立Websocket客户端连接
    查看>>
    Node-RED中建立静态网页和动态网页内容
    查看>>
    Node-RED中解析高德地图天气api的json数据显示天气仪表盘
    查看>>
    Node-RED中连接Mysql数据库并实现增删改查的操作
    查看>>
    Node-RED中通过node-red-ui-webcam节点实现访问摄像头并截取照片预览
    查看>>
    Node-RED中配置周期性执行、指定时间阶段执行、指定时间执行事件
    查看>>
    Node-RED安装图形化节点dashboard实现订阅mqtt主题并在仪表盘中显示温度
    查看>>
    Node-RED怎样导出导入流程为json文件
    查看>>
    Node-RED订阅MQTT主题并调试数据
    查看>>
    Node-RED通过npm安装的方式对应卸载
    查看>>
    node-request模块
    查看>>
    node-static 任意文件读取漏洞复现(CVE-2023-26111)
    查看>>
    Node.js 8 中的 util.promisify的详解
    查看>>
    node.js debug在webstrom工具
    查看>>
    Node.js HTTP模块详解:创建服务器、响应请求与客户端请求
    查看>>
    Node.js RESTful API如何使用?
    查看>>
    node.js url模块
    查看>>
    Node.js Web 模块的各种用法和常见场景
    查看>>
    Node.js 之 log4js 完全讲解
    查看>>
    Node.js 函数是什么样的?
    查看>>