博客
关于我
利用 SQLAlchemy 实现轻量级数据库迁移
阅读量:686 次
发布时间:2019-03-17

本文共 2942 字,大约阅读时间需要 9 分钟。

lightweight database migration tools with python

in daily work, it's common to need to migrate data between different databases. here are some simple methods to consider:

copy data between databases

  • kettle's table copy wizard

    previously wrote a blog post about this: a simple guide to using kettle for database migrations.

  • use csv as intermediary

    requires time to process field data types and ensure data consistency.

  • utilize sqlalchemy

    wrote a blog post about this too: a step-by-step guide to using sqlalchemy for database migrations. the process involves creating models and manually mapping field types.

  • step-by-step database migration

    assuming you need to migrate the emp_master table from sql server to sqlite, follow these steps:

  • create the target database schema

    use sqlacodegen to generate sqlalchemy models based on the source database:

    sqlacodegen mssql+pymssql://user:pwd@localhost:1433/testdb > models.py --tables emp_master

    adjust the generated code manually to match your needs:

    # models.pyfrom sqlalchemy import Column, Integer, Stringfrom sqlalchemy.ext.declarative import declarative_baseBase = declarative_base()class EmpMaster(Base):    __tablename__ = 'emp_master'    emp_id = Column(Integer, primary_key=True)    gender = Column(String(10))    age = Column(Integer)    email = Column(String(50))    phone_nr = Column(String(20))    education = Column(String(20))    marital_stat = Column(String(20))    nr_of_children = Column(Integer)

    create the database and table using sqlalchemy:

    # create_schema.pyfrom sqlalchemy import create_enginefrom models import Baseengine = create_engine('sqlite:///employees.db')Base.metadata.create_all(engine)
  • migrate data using pandas

    read data from source database to a pandas dataframe and write it to the target database:

    # data_migrate.pyfrom sqlalchemy import create_engineimport pandas as pdsource_engine = create_engine('mssql+pymssql://user:pwd@localhost:1433/testdb')target_engine = create_engine('sqlite:///employees.db')df = pd.read_sql('emp_master', source_engine)df.to_sql('emp_master', target_engine, index=False, if_exists='replace')
  • advantages of using pandas for data migration

    pandas provides a convenient way to handle data transformation and export to various database formats. its read_sql() function simplifies data extraction from databases, while to_sql() handles the insertion process.

    why choose pandas for database migration

    pandas is lightweight and efficient for data migration tasks. it allows for quick data visualization and manipulation before storage in the target database.

    potential issues to address

    • ensure that data types are compatible between source and target databases.
    • handle null values and data validation to maintain data integrity.
    • test the migration process on a small dataset before applying it to the live database.

    by following these steps, you can efficiently migrate your database while minimizing risks and ensuring data consistency.

    转载地址:http://zjthz.baihongyu.com/

    你可能感兴趣的文章
    Objective-C实现collatz sequence考拉兹序列算法(附完整源码)
    查看>>
    Objective-C实现Collatz 序列算法(附完整源码)
    查看>>
    Objective-C实现comb sort梳状排序算法(附完整源码)
    查看>>
    Objective-C实现combinationSum组合和算法(附完整源码)
    查看>>
    Objective-C实现combinations排列组合算法(附完整源码)
    查看>>
    Objective-C实现combine With Repetitions结合重复算法(附完整源码)
    查看>>
    Objective-C实现combine Without Repetitions不重复地结合算法(附完整源码)
    查看>>
    Objective-C实现conjugate gradient共轭梯度算法(附完整源码)
    查看>>
    Objective-C实现connected components连通分量算法(附完整源码)
    查看>>
    Objective-C实现Connected Components连通分量算法(附完整源码)
    查看>>
    Objective-C实现Convex hull凸包问题算法(附完整源码)
    查看>>
    Objective-C实现convolution neural network卷积神经网络算法(附完整源码)
    查看>>
    Objective-C实现convolve卷积算法(附完整源码)
    查看>>